-
Notifications
You must be signed in to change notification settings - Fork 14.2k
[mlir][sparse] refactoring sparse runtime lib into less paths #85332
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Two constructors could be easily refactored into one after a lot of previous deprecated code has been removed.
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesTwo constructors could be easily refactored into one after a lot of previous deprecated code has been removed. Full diff: https://github.com/llvm/llvm-project/pull/85332.diff 3 Files Affected:
diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
index f927b82628b1a6..714e664dd0f4eb 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
@@ -206,7 +206,7 @@ class SparseTensorReader final {
auto *lvlCOO = readCOO<V>(map, lvlSizes);
auto *tensor = SparseTensorStorage<P, I, V>::newFromCOO(
dimRank, getDimSizes(), lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim,
- *lvlCOO);
+ lvlCOO);
delete lvlCOO;
return tensor;
}
diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h b/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
index b207fc1ee104d3..773957a8b51162 100644
--- a/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
+++ b/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
@@ -201,33 +201,18 @@ class SparseTensorStorage final : public SparseTensorStorageBase {
public:
/// Constructs a sparse tensor with the given encoding, and allocates
- /// overhead storage according to some simple heuristics. When the
- /// `bool` argument is true and `lvlTypes` are all dense, then this
- /// ctor will also initialize the values array with zeros. That
- /// argument should be true when an empty tensor is intended; whereas
- /// it should usually be false when the ctor will be followed up by
- /// some other form of initialization.
+ /// overhead storage according to some simple heuristics. When lvlCOO
+ /// is set, the sparse tensor initializes with the contents from that
+ /// data structure. Otherwise, an empty sparse tensor results.
SparseTensorStorage(uint64_t dimRank, const uint64_t *dimSizes,
uint64_t lvlRank, const uint64_t *lvlSizes,
const LevelType *lvlTypes, const uint64_t *dim2lvl,
- const uint64_t *lvl2dim, SparseTensorCOO<V> *lvlCOO,
- bool initializeValuesIfAllDense);
+ const uint64_t *lvl2dim, SparseTensorCOO<V> *lvlCOO);
/// Constructs a sparse tensor with the given encoding, and initializes
- /// the contents from the COO. This ctor performs the same heuristic
- /// overhead-storage allocation as the ctor above.
- SparseTensorStorage(uint64_t dimRank, const uint64_t *dimSizes,
- uint64_t lvlRank, const uint64_t *lvlSizes,
- const LevelType *lvlTypes, const uint64_t *dim2lvl,
- const uint64_t *lvl2dim, SparseTensorCOO<V> &lvlCOO);
-
- /// Constructs a sparse tensor with the given encoding, and initializes
- /// the contents from the level buffers. This ctor allocates exactly
- /// the required amount of overhead storage, not using any heuristics.
- /// It assumes that the data provided by `lvlBufs` can be directly used to
- /// interpret the result sparse tensor and performs *NO* integrity test on the
- /// input data. It also assume that the trailing COO coordinate buffer is
- /// passed in as a single AoS memory.
+ /// the contents from the level buffers. The constructor assumes that the
+ /// data provided by `lvlBufs` can be directly used to interpret the result
+ /// sparse tensor and performs no integrity test on the input data.
SparseTensorStorage(uint64_t dimRank, const uint64_t *dimSizes,
uint64_t lvlRank, const uint64_t *lvlSizes,
const LevelType *lvlTypes, const uint64_t *dim2lvl,
@@ -244,16 +229,14 @@ class SparseTensorStorage final : public SparseTensorStorageBase {
newFromCOO(uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
- SparseTensorCOO<V> &lvlCOO);
+ SparseTensorCOO<V> *lvlCOO);
- /// Allocates a new sparse tensor and initialize it with the data stored level
- /// buffers directly.
+ /// Allocates a new sparse tensor and initialize it from the given buffers.
static SparseTensorStorage<P, C, V> *
- packFromLvlBuffers(uint64_t dimRank, const uint64_t *dimSizes,
- uint64_t lvlRank, const uint64_t *lvlSizes,
- const LevelType *lvlTypes, const uint64_t *dim2lvl,
- const uint64_t *lvl2dim, uint64_t srcRank,
- const intptr_t *buffers);
+ newFromBuffers(uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
+ const uint64_t *lvlSizes, const LevelType *lvlTypes,
+ const uint64_t *dim2lvl, const uint64_t *lvl2dim,
+ uint64_t srcRank, const intptr_t *buffers);
~SparseTensorStorage() final = default;
@@ -563,9 +546,9 @@ SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::newEmpty(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim) {
+ SparseTensorCOO<V> *noLvlCOO = nullptr;
return new SparseTensorStorage<P, C, V>(dimRank, dimSizes, lvlRank, lvlSizes,
- lvlTypes, dim2lvl, lvl2dim, nullptr,
- true);
+ lvlTypes, dim2lvl, lvl2dim, noLvlCOO);
}
template <typename P, typename C, typename V>
@@ -573,13 +556,14 @@ SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::newFromCOO(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
- SparseTensorCOO<V> &lvlCOO) {
+ SparseTensorCOO<V> *lvlCOO) {
+ assert(lvlCOO);
return new SparseTensorStorage<P, C, V>(dimRank, dimSizes, lvlRank, lvlSizes,
lvlTypes, dim2lvl, lvl2dim, lvlCOO);
}
template <typename P, typename C, typename V>
-SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::packFromLvlBuffers(
+SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::newFromBuffers(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim, uint64_t srcRank,
@@ -599,10 +583,9 @@ SparseTensorStorage<P, C, V>::SparseTensorStorage(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
- SparseTensorCOO<V> *lvlCOO, bool initializeValuesIfAllDense)
+ SparseTensorCOO<V> *lvlCOO)
: SparseTensorStorage(dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes,
dim2lvl, lvl2dim) {
- assert(!lvlCOO || lvlRank == lvlCOO->getRank());
// Provide hints on capacity of positions and coordinates.
// TODO: needs much fine-tuning based on actual sparsity; currently
// we reserve position/coordinate space based on all previous dense
@@ -633,27 +616,20 @@ SparseTensorStorage<P, C, V>::SparseTensorStorage(
sz = detail::checkedMul(sz, lvlSizes[l]);
}
}
- if (allDense && initializeValuesIfAllDense)
+ if (lvlCOO) {
+ /* New from COO: ensure it is sorted. */
+ assert(lvlCOO->getRank() == lvlRank);
+ lvlCOO->sort();
+ // Now actually insert the `elements`.
+ const auto &elements = lvlCOO->getElements();
+ const uint64_t nse = elements.size();
+ assert(values.size() == 0);
+ values.reserve(nse);
+ fromCOO(elements, 0, nse, 0);
+ } else if (allDense) {
+ /* New empty (all dense) */
values.resize(sz, 0);
-}
-
-template <typename P, typename C, typename V>
-SparseTensorStorage<P, C, V>::SparseTensorStorage( // NOLINT
- uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
- const uint64_t *lvlSizes, const LevelType *lvlTypes,
- const uint64_t *dim2lvl, const uint64_t *lvl2dim,
- SparseTensorCOO<V> &lvlCOO)
- : SparseTensorStorage(dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes,
- dim2lvl, lvl2dim, nullptr, false) {
- // Ensure lvlCOO is sorted.
- assert(lvlRank == lvlCOO.getRank());
- lvlCOO.sort();
- // Now actually insert the `elements`.
- const auto &elements = lvlCOO.getElements();
- const uint64_t nse = elements.size();
- assert(values.size() == 0);
- values.reserve(nse);
- fromCOO(elements, 0, nse, 0);
+ }
}
template <typename P, typename C, typename V>
diff --git a/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp b/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp
index 731abcbbf1f39e..8835056099d234 100644
--- a/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp
+++ b/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp
@@ -127,7 +127,7 @@ extern "C" {
case Action::kPack: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
intptr_t *buffers = static_cast<intptr_t *>(ptr); \
- return SparseTensorStorage<P, C, V>::packFromLvlBuffers( \
+ return SparseTensorStorage<P, C, V>::newFromBuffers( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim, \
dimRank, buffers); \
} \
|
matthias-springer
approved these changes
Mar 14, 2024
PeimingLiu
approved these changes
Mar 14, 2024
yinying-lisa-li
approved these changes
Mar 14, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Two constructors could be easily refactored into one after a lot of previous deprecated code has been removed.