Skip to content

[mlir][sparse] refactoring sparse runtime lib into less paths #85332

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion mlir/include/mlir/ExecutionEngine/SparseTensor/File.h
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,7 @@ class SparseTensorReader final {
auto *lvlCOO = readCOO<V>(map, lvlSizes);
auto *tensor = SparseTensorStorage<P, I, V>::newFromCOO(
dimRank, getDimSizes(), lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim,
*lvlCOO);
lvlCOO);
delete lvlCOO;
return tensor;
}
Expand Down
88 changes: 32 additions & 56 deletions mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h
Original file line number Diff line number Diff line change
Expand Up @@ -201,33 +201,18 @@ class SparseTensorStorage final : public SparseTensorStorageBase {

public:
/// Constructs a sparse tensor with the given encoding, and allocates
/// overhead storage according to some simple heuristics. When the
/// `bool` argument is true and `lvlTypes` are all dense, then this
/// ctor will also initialize the values array with zeros. That
/// argument should be true when an empty tensor is intended; whereas
/// it should usually be false when the ctor will be followed up by
/// some other form of initialization.
/// overhead storage according to some simple heuristics. When lvlCOO
/// is set, the sparse tensor initializes with the contents from that
/// data structure. Otherwise, an empty sparse tensor results.
SparseTensorStorage(uint64_t dimRank, const uint64_t *dimSizes,
uint64_t lvlRank, const uint64_t *lvlSizes,
const LevelType *lvlTypes, const uint64_t *dim2lvl,
const uint64_t *lvl2dim, SparseTensorCOO<V> *lvlCOO,
bool initializeValuesIfAllDense);
const uint64_t *lvl2dim, SparseTensorCOO<V> *lvlCOO);

/// Constructs a sparse tensor with the given encoding, and initializes
/// the contents from the COO. This ctor performs the same heuristic
/// overhead-storage allocation as the ctor above.
SparseTensorStorage(uint64_t dimRank, const uint64_t *dimSizes,
uint64_t lvlRank, const uint64_t *lvlSizes,
const LevelType *lvlTypes, const uint64_t *dim2lvl,
const uint64_t *lvl2dim, SparseTensorCOO<V> &lvlCOO);

/// Constructs a sparse tensor with the given encoding, and initializes
/// the contents from the level buffers. This ctor allocates exactly
/// the required amount of overhead storage, not using any heuristics.
/// It assumes that the data provided by `lvlBufs` can be directly used to
/// interpret the result sparse tensor and performs *NO* integrity test on the
/// input data. It also assume that the trailing COO coordinate buffer is
/// passed in as a single AoS memory.
/// the contents from the level buffers. The constructor assumes that the
/// data provided by `lvlBufs` can be directly used to interpret the result
/// sparse tensor and performs no integrity test on the input data.
SparseTensorStorage(uint64_t dimRank, const uint64_t *dimSizes,
uint64_t lvlRank, const uint64_t *lvlSizes,
const LevelType *lvlTypes, const uint64_t *dim2lvl,
Expand All @@ -244,16 +229,14 @@ class SparseTensorStorage final : public SparseTensorStorageBase {
newFromCOO(uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
SparseTensorCOO<V> &lvlCOO);
SparseTensorCOO<V> *lvlCOO);

/// Allocates a new sparse tensor and initialize it with the data stored level
/// buffers directly.
/// Allocates a new sparse tensor and initialize it from the given buffers.
static SparseTensorStorage<P, C, V> *
packFromLvlBuffers(uint64_t dimRank, const uint64_t *dimSizes,
uint64_t lvlRank, const uint64_t *lvlSizes,
const LevelType *lvlTypes, const uint64_t *dim2lvl,
const uint64_t *lvl2dim, uint64_t srcRank,
const intptr_t *buffers);
newFromBuffers(uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
uint64_t srcRank, const intptr_t *buffers);

~SparseTensorStorage() final = default;

Expand Down Expand Up @@ -563,23 +546,24 @@ SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::newEmpty(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim) {
SparseTensorCOO<V> *noLvlCOO = nullptr;
return new SparseTensorStorage<P, C, V>(dimRank, dimSizes, lvlRank, lvlSizes,
lvlTypes, dim2lvl, lvl2dim, nullptr,
true);
lvlTypes, dim2lvl, lvl2dim, noLvlCOO);
}

template <typename P, typename C, typename V>
SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::newFromCOO(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
SparseTensorCOO<V> &lvlCOO) {
SparseTensorCOO<V> *lvlCOO) {
assert(lvlCOO);
return new SparseTensorStorage<P, C, V>(dimRank, dimSizes, lvlRank, lvlSizes,
lvlTypes, dim2lvl, lvl2dim, lvlCOO);
}

template <typename P, typename C, typename V>
SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::packFromLvlBuffers(
SparseTensorStorage<P, C, V> *SparseTensorStorage<P, C, V>::newFromBuffers(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim, uint64_t srcRank,
Expand All @@ -599,10 +583,9 @@ SparseTensorStorage<P, C, V>::SparseTensorStorage(
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
SparseTensorCOO<V> *lvlCOO, bool initializeValuesIfAllDense)
SparseTensorCOO<V> *lvlCOO)
: SparseTensorStorage(dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes,
dim2lvl, lvl2dim) {
assert(!lvlCOO || lvlRank == lvlCOO->getRank());
// Provide hints on capacity of positions and coordinates.
// TODO: needs much fine-tuning based on actual sparsity; currently
// we reserve position/coordinate space based on all previous dense
Expand Down Expand Up @@ -633,27 +616,20 @@ SparseTensorStorage<P, C, V>::SparseTensorStorage(
sz = detail::checkedMul(sz, lvlSizes[l]);
}
}
if (allDense && initializeValuesIfAllDense)
if (lvlCOO) {
/* New from COO: ensure it is sorted. */
assert(lvlCOO->getRank() == lvlRank);
lvlCOO->sort();
// Now actually insert the `elements`.
const auto &elements = lvlCOO->getElements();
const uint64_t nse = elements.size();
assert(values.size() == 0);
values.reserve(nse);
fromCOO(elements, 0, nse, 0);
} else if (allDense) {
/* New empty (all dense) */
values.resize(sz, 0);
}

template <typename P, typename C, typename V>
SparseTensorStorage<P, C, V>::SparseTensorStorage( // NOLINT
uint64_t dimRank, const uint64_t *dimSizes, uint64_t lvlRank,
const uint64_t *lvlSizes, const LevelType *lvlTypes,
const uint64_t *dim2lvl, const uint64_t *lvl2dim,
SparseTensorCOO<V> &lvlCOO)
: SparseTensorStorage(dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes,
dim2lvl, lvl2dim, nullptr, false) {
// Ensure lvlCOO is sorted.
assert(lvlRank == lvlCOO.getRank());
lvlCOO.sort();
// Now actually insert the `elements`.
const auto &elements = lvlCOO.getElements();
const uint64_t nse = elements.size();
assert(values.size() == 0);
values.reserve(nse);
fromCOO(elements, 0, nse, 0);
}
}

template <typename P, typename C, typename V>
Expand Down
2 changes: 1 addition & 1 deletion mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,7 @@ extern "C" {
case Action::kPack: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
intptr_t *buffers = static_cast<intptr_t *>(ptr); \
return SparseTensorStorage<P, C, V>::packFromLvlBuffers( \
return SparseTensorStorage<P, C, V>::newFromBuffers( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim, \
dimRank, buffers); \
} \
Expand Down