-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] expose optimization flags to mini pipeline #95158
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Some of the options only fed into the full sparse pipeline. However, some backends prefer to use the sparse minipipeline. This change exposes some important optimization flags to the pass as well. This prepares some SIMDization of PyTorch sparsified code.
@llvm/pr-subscribers-mlir Author: Aart Bik (aartbik) ChangesSome of the options only fed into the full sparse pipeline. However, some backends prefer to use the sparse minipipeline. This change exposes some important optimization flags to the pass as well. This prepares some SIMDization of PyTorch sparsified code. Full diff: https://github.com/llvm/llvm-project/pull/95158.diff 3 Files Affected:
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
index 2f844cee5ff52..7810ad2d60945 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
@@ -462,6 +462,18 @@ def SparsificationAndBufferization : Pass<"sparsification-and-bufferization", "M
"sparse_tensor::SparseTensorDialect",
"vector::VectorDialect"
];
+ // Important optimization options are made visible to the mini-pipeline
+ // so that clients can set these (when not using the full pipeline).
+ let options = [
+ Option<"vectorLength", "vl", "int32_t", "0",
+ "Set the vector length (use 0 to disable vectorization)">,
+ Option<"enableVLAVectorization", "enable-vla-vectorization", "bool", "false",
+ "Enable vector length agnostic vectorization">,
+ Option<"enableSIMDIndex32", "enable-simd-index32", "bool", "false",
+ "Enable i32 indexing into vectors (for efficient gather/scatter)">,
+ Option<"enableGPULibgen", "enable-gpu-libgen", "bool", "false",
+ "Enable GPU acceleration by means of direct library calls">,
+ ];
}
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_PASSES
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
index 3a8972072ac3b..13c750e83d045 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
@@ -61,20 +61,34 @@ class SparsificationAndBufferizationPass
: public impl::SparsificationAndBufferizationBase<
SparsificationAndBufferizationPass> {
public:
+ // Private pass options only.
SparsificationAndBufferizationPass(
const bufferization::OneShotBufferizationOptions &bufferizationOptions,
const SparsificationOptions &sparsificationOptions,
bool createSparseDeallocs, bool enableRuntimeLibrary,
- bool enableBufferInitialization, unsigned vectorLength,
- bool enableVLAVectorization, bool enableSIMDIndex32, bool enableGPULibgen)
+ bool enableBufferInitialization)
: bufferizationOptions(bufferizationOptions),
sparsificationOptions(sparsificationOptions),
createSparseDeallocs(createSparseDeallocs),
enableRuntimeLibrary(enableRuntimeLibrary),
- enableBufferInitialization(enableBufferInitialization),
- vectorLength(vectorLength),
- enableVLAVectorization(enableVLAVectorization),
- enableSIMDIndex32(enableSIMDIndex32), enableGPULibgen(enableGPULibgen) {
+ enableBufferInitialization(enableBufferInitialization) {}
+ // Private pass options and visible pass options.
+ SparsificationAndBufferizationPass(
+ const bufferization::OneShotBufferizationOptions &bufferizationOptions,
+ const SparsificationOptions &sparsificationOptions,
+ bool createSparseDeallocs, bool enableRuntimeLibrary,
+ bool enableBufferInitialization, unsigned vl, bool vla, bool index32,
+ bool gpu)
+ : bufferizationOptions(bufferizationOptions),
+ sparsificationOptions(sparsificationOptions),
+ createSparseDeallocs(createSparseDeallocs),
+ enableRuntimeLibrary(enableRuntimeLibrary),
+ enableBufferInitialization(enableBufferInitialization) {
+ // Set the visible pass options explicitly.
+ vectorLength = vl;
+ enableVLAVectorization = vla;
+ enableSIMDIndex32 = index32;
+ enableGPULibgen = gpu;
}
/// Bufferize all dense ops. This assumes that no further analysis is needed
@@ -178,10 +192,6 @@ class SparsificationAndBufferizationPass
bool createSparseDeallocs;
bool enableRuntimeLibrary;
bool enableBufferInitialization;
- unsigned vectorLength;
- bool enableVLAVectorization;
- bool enableSIMDIndex32;
- bool enableGPULibgen;
};
} // namespace sparse_tensor
@@ -213,16 +223,13 @@ mlir::getBufferizationOptionsForSparsification(bool analysisOnly) {
std::unique_ptr<mlir::Pass> mlir::createSparsificationAndBufferizationPass() {
SparsificationOptions sparseOptions;
- return createSparsificationAndBufferizationPass(
+ return std::make_unique<
+ mlir::sparse_tensor::SparsificationAndBufferizationPass>(
getBufferizationOptionsForSparsification(/*analysisOnly=*/false),
sparseOptions,
/*createSparseDeallocs=*/false,
/*enableRuntimeLibrary=*/false,
- /*enableBufferInitialization=*/false,
- /*vectorLength=*/0,
- /*enableVLAVectorization=*/false,
- /*enableSIMDIndex32=*/false,
- /*enableGPULibgen=*/false);
+ /*enableBufferInitialization=*/false);
}
std::unique_ptr<mlir::Pass> mlir::createSparsificationAndBufferizationPass(
diff --git a/mlir/test/Dialect/SparseTensor/minipipeline_vector.mlir b/mlir/test/Dialect/SparseTensor/minipipeline_vector.mlir
new file mode 100755
index 0000000000000..2475aa5139da4
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/minipipeline_vector.mlir
@@ -0,0 +1,43 @@
+// RUN: mlir-opt %s --sparsification-and-bufferization | FileCheck %s --check-prefix=CHECK-NOVEC
+// RUN: mlir-opt %s --sparsification-and-bufferization="vl=8" | FileCheck %s --check-prefix=CHECK-VEC
+
+// Test to ensure we can pass optimization flags into
+// the mini sparsification and bufferization pipeline.
+
+#SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
+
+#trait_sum_reduction = {
+ indexing_maps = [
+ affine_map<(i) -> (i)>, // a
+ affine_map<(i) -> ()> // x (scalar out)
+ ],
+ iterator_types = ["reduction"],
+ doc = "x += SUM_i a(i)"
+}
+
+//
+// CHECK-NOVEC-LABEL: func.func @sum_reduction
+// CHECK-NOVEC: scf.for
+// CHECK-NOVEC: arith.addf %{{.*}} %{{.*}} : f32
+// CHECK-NOVEC: }
+//
+// CHECK-VEC-LABEL: func.func @sum_reduction
+// CHECK-VEC: vector.insertelement
+// CHECK-VEC: scf.for
+// CHECK-VEC: vector.create_mask
+// CHECK-VEC: vector.maskedload
+// CHECK-VEC: arith.addf %{{.*}} %{{.*}} : vector<8xf32>
+// CHECK-VEC: }
+// CHECK-VEC: vector.reduction <add>
+//
+func.func @sum_reduction(%arga: tensor<?xf32, #SV>,
+ %argx: tensor<f32>) -> tensor<f32> {
+ %0 = linalg.generic #trait_sum_reduction
+ ins(%arga: tensor<?xf32, #SV>)
+ outs(%argx: tensor<f32>) {
+ ^bb(%a: f32, %x: f32):
+ %0 = arith.addf %x, %a : f32
+ linalg.yield %0 : f32
+ } -> tensor<f32>
+ return %0 : tensor<f32>
+}
|
@llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesSome of the options only fed into the full sparse pipeline. However, some backends prefer to use the sparse minipipeline. This change exposes some important optimization flags to the pass as well. This prepares some SIMDization of PyTorch sparsified code. Full diff: https://github.com/llvm/llvm-project/pull/95158.diff 3 Files Affected:
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
index 2f844cee5ff52..7810ad2d60945 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
@@ -462,6 +462,18 @@ def SparsificationAndBufferization : Pass<"sparsification-and-bufferization", "M
"sparse_tensor::SparseTensorDialect",
"vector::VectorDialect"
];
+ // Important optimization options are made visible to the mini-pipeline
+ // so that clients can set these (when not using the full pipeline).
+ let options = [
+ Option<"vectorLength", "vl", "int32_t", "0",
+ "Set the vector length (use 0 to disable vectorization)">,
+ Option<"enableVLAVectorization", "enable-vla-vectorization", "bool", "false",
+ "Enable vector length agnostic vectorization">,
+ Option<"enableSIMDIndex32", "enable-simd-index32", "bool", "false",
+ "Enable i32 indexing into vectors (for efficient gather/scatter)">,
+ Option<"enableGPULibgen", "enable-gpu-libgen", "bool", "false",
+ "Enable GPU acceleration by means of direct library calls">,
+ ];
}
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_PASSES
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
index 3a8972072ac3b..13c750e83d045 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparsificationAndBufferizationPass.cpp
@@ -61,20 +61,34 @@ class SparsificationAndBufferizationPass
: public impl::SparsificationAndBufferizationBase<
SparsificationAndBufferizationPass> {
public:
+ // Private pass options only.
SparsificationAndBufferizationPass(
const bufferization::OneShotBufferizationOptions &bufferizationOptions,
const SparsificationOptions &sparsificationOptions,
bool createSparseDeallocs, bool enableRuntimeLibrary,
- bool enableBufferInitialization, unsigned vectorLength,
- bool enableVLAVectorization, bool enableSIMDIndex32, bool enableGPULibgen)
+ bool enableBufferInitialization)
: bufferizationOptions(bufferizationOptions),
sparsificationOptions(sparsificationOptions),
createSparseDeallocs(createSparseDeallocs),
enableRuntimeLibrary(enableRuntimeLibrary),
- enableBufferInitialization(enableBufferInitialization),
- vectorLength(vectorLength),
- enableVLAVectorization(enableVLAVectorization),
- enableSIMDIndex32(enableSIMDIndex32), enableGPULibgen(enableGPULibgen) {
+ enableBufferInitialization(enableBufferInitialization) {}
+ // Private pass options and visible pass options.
+ SparsificationAndBufferizationPass(
+ const bufferization::OneShotBufferizationOptions &bufferizationOptions,
+ const SparsificationOptions &sparsificationOptions,
+ bool createSparseDeallocs, bool enableRuntimeLibrary,
+ bool enableBufferInitialization, unsigned vl, bool vla, bool index32,
+ bool gpu)
+ : bufferizationOptions(bufferizationOptions),
+ sparsificationOptions(sparsificationOptions),
+ createSparseDeallocs(createSparseDeallocs),
+ enableRuntimeLibrary(enableRuntimeLibrary),
+ enableBufferInitialization(enableBufferInitialization) {
+ // Set the visible pass options explicitly.
+ vectorLength = vl;
+ enableVLAVectorization = vla;
+ enableSIMDIndex32 = index32;
+ enableGPULibgen = gpu;
}
/// Bufferize all dense ops. This assumes that no further analysis is needed
@@ -178,10 +192,6 @@ class SparsificationAndBufferizationPass
bool createSparseDeallocs;
bool enableRuntimeLibrary;
bool enableBufferInitialization;
- unsigned vectorLength;
- bool enableVLAVectorization;
- bool enableSIMDIndex32;
- bool enableGPULibgen;
};
} // namespace sparse_tensor
@@ -213,16 +223,13 @@ mlir::getBufferizationOptionsForSparsification(bool analysisOnly) {
std::unique_ptr<mlir::Pass> mlir::createSparsificationAndBufferizationPass() {
SparsificationOptions sparseOptions;
- return createSparsificationAndBufferizationPass(
+ return std::make_unique<
+ mlir::sparse_tensor::SparsificationAndBufferizationPass>(
getBufferizationOptionsForSparsification(/*analysisOnly=*/false),
sparseOptions,
/*createSparseDeallocs=*/false,
/*enableRuntimeLibrary=*/false,
- /*enableBufferInitialization=*/false,
- /*vectorLength=*/0,
- /*enableVLAVectorization=*/false,
- /*enableSIMDIndex32=*/false,
- /*enableGPULibgen=*/false);
+ /*enableBufferInitialization=*/false);
}
std::unique_ptr<mlir::Pass> mlir::createSparsificationAndBufferizationPass(
diff --git a/mlir/test/Dialect/SparseTensor/minipipeline_vector.mlir b/mlir/test/Dialect/SparseTensor/minipipeline_vector.mlir
new file mode 100755
index 0000000000000..2475aa5139da4
--- /dev/null
+++ b/mlir/test/Dialect/SparseTensor/minipipeline_vector.mlir
@@ -0,0 +1,43 @@
+// RUN: mlir-opt %s --sparsification-and-bufferization | FileCheck %s --check-prefix=CHECK-NOVEC
+// RUN: mlir-opt %s --sparsification-and-bufferization="vl=8" | FileCheck %s --check-prefix=CHECK-VEC
+
+// Test to ensure we can pass optimization flags into
+// the mini sparsification and bufferization pipeline.
+
+#SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
+
+#trait_sum_reduction = {
+ indexing_maps = [
+ affine_map<(i) -> (i)>, // a
+ affine_map<(i) -> ()> // x (scalar out)
+ ],
+ iterator_types = ["reduction"],
+ doc = "x += SUM_i a(i)"
+}
+
+//
+// CHECK-NOVEC-LABEL: func.func @sum_reduction
+// CHECK-NOVEC: scf.for
+// CHECK-NOVEC: arith.addf %{{.*}} %{{.*}} : f32
+// CHECK-NOVEC: }
+//
+// CHECK-VEC-LABEL: func.func @sum_reduction
+// CHECK-VEC: vector.insertelement
+// CHECK-VEC: scf.for
+// CHECK-VEC: vector.create_mask
+// CHECK-VEC: vector.maskedload
+// CHECK-VEC: arith.addf %{{.*}} %{{.*}} : vector<8xf32>
+// CHECK-VEC: }
+// CHECK-VEC: vector.reduction <add>
+//
+func.func @sum_reduction(%arga: tensor<?xf32, #SV>,
+ %argx: tensor<f32>) -> tensor<f32> {
+ %0 = linalg.generic #trait_sum_reduction
+ ins(%arga: tensor<?xf32, #SV>)
+ outs(%argx: tensor<f32>) {
+ ^bb(%a: f32, %x: f32):
+ %0 = arith.addf %x, %a : f32
+ linalg.yield %0 : f32
+ } -> tensor<f32>
+ return %0 : tensor<f32>
+}
|
Some of the options only fed into the full sparse pipeline. However, some backends prefer to use the sparse minipipeline. This change exposes some important optimization flags to the pass as well. This prepares some SIMDization of PyTorch sparsified code.