Skip to content

feat: dynamic shape support for squeeze ops #2994

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -622,8 +622,8 @@ def aten_ops_quantize_fp8(
)


@dynamo_tensorrt_converter(torch.ops.aten.squeeze.dim)
@dynamo_tensorrt_converter(torch.ops.aten.squeeze.dims)
@dynamo_tensorrt_converter(torch.ops.aten.squeeze.dim, supports_dynamic_shapes=True)
@dynamo_tensorrt_converter(torch.ops.aten.squeeze.dims, supports_dynamic_shapes=True)
def aten_ops_squeeze(
ctx: ConversionContext,
target: Target,
Expand Down
30 changes: 18 additions & 12 deletions py/torch_tensorrt/dynamo/conversion/impl/squeeze.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,11 @@
from torch.fx.node import Target
from torch_tensorrt.dynamo._SourceIR import SourceIR
from torch_tensorrt.dynamo.conversion._ConversionContext import ConversionContext
from torch_tensorrt.dynamo.conversion.converter_utils import get_positive_dim
from torch_tensorrt.fx.converters.converter_utils import set_layer_name
from torch_tensorrt.dynamo.conversion.converter_utils import (
get_positive_dim,
set_layer_name,
)
from torch_tensorrt.fx.types import TRTTensor
from torch_tensorrt.fx.utils import get_dynamic_dims


def squeeze(
Expand All @@ -25,8 +26,8 @@ def squeeze(
if isinstance(dim, int):
dims.append(dim)
else:
for dim in dim:
dims.append(dim)
for d in dim:
dims.append(d)

new_dims = []
for dim in dims:
Expand All @@ -36,17 +37,22 @@ def squeeze(
)

assert input.shape[dim] != -1, "We don't support squeeze dynamic dim."
assert (
len(get_dynamic_dims(input.shape)) <= 1
), "Currently more than one dynamic dim for input to squeeze is not supported."
new_dims.append(dim)

output_shape = []
dim_to_remove = []
new_permutation = []
for i, s in enumerate(input.shape):
if (i in new_dims) and s == 1:
continue
output_shape.append(s)
dim_to_remove.append(i)
else:
new_permutation.append(i)
# If number of reshape dimensions is less than input, 0s are resolved by aligning
# the most significant dimensions of input
output_shape = tuple([0] * len(new_permutation))
new_permutation += dim_to_remove

layer = ctx.net.add_shuffle(input)
layer.reshape_dims = tuple(output_shape)
layer.first_transpose = new_permutation
layer.reshape_dims = output_shape
set_layer_name(layer, target, name, source_ir)
return layer.get_output(0)
43 changes: 35 additions & 8 deletions tests/py/dynamo/conversion/test_squeeze_aten.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,23 +43,50 @@ def forward(self, x):
)


class TestSqueezeConverter(DispatchTestCase):
class TestSqueezeConverterDynamic(DispatchTestCase):
@parameterized.expand(
[
("2d_dim", (1), (-1, 1), [((1, 1), (1, 1), (3, 1))]),
("3d_one_dim", (1), (-1, 2, 1), [((1, 2, 1), (1, 2, 1), (3, 2, 1))]),
(
"5d_two_dynamic_shape_-1",
(0,),
(1, 1, 1, 1, 1),
(1, 2, 1, 2, 1),
(1, 4, 1, 3, 1),
),
(
"5d_two_dynamic_shape_-2",
(0, 2),
(1, 1, 1, 1, 1),
(1, 2, 1, 2, 1),
(1, 4, 1, 3, 1),
),
(
"5d_three_dynamic_shape_-2",
(0, 4),
(1, 1, 1, 1, 1),
(1, 2, 4, 2, 1),
(1, 4, 4, 3, 1),
),
(
"4d_two_dynamic_shape_-2",
(0, 2),
(1, 1, 2, 1),
(1, 2, 2, 2),
(1, 4, 2, 3),
),
]
)
def test_squeeze(self, _, dim, init_size, shape_range):
def test_squeeze(self, _, dim, min_shape, opt_shape, max_shape):
class Squeeze(nn.Module):
def forward(self, x):
return torch.ops.aten.squeeze.dim(x, dim)
return torch.ops.aten.squeeze.dims(x, dim)

input_specs = [
Input(
shape=init_size,
dtype=torch.float32,
shape_ranges=shape_range,
min_shape=min_shape,
opt_shape=opt_shape,
max_shape=max_shape,
dtype=torch.float,
),
]
self.run_test_with_dynamic_shape(
Expand Down
Loading