Skip to content

Support for interpolation (aten::upsample_nearest) #87

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Jun 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions core/conversion/InterfaceTypes.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -55,9 +55,9 @@ InputRange::InputRange(std::vector<int64_t> min_shape, std::vector<int64_t> opt_
<< max_shape.size() << ")");
}

min = util::toDimsPad(min_shape, 4);
opt = util::toDimsPad(opt_shape, 4);
max = util::toDimsPad(max_shape, 4);
min = util::toDims(min_shape);
opt = util::toDims(opt_shape);
max = util::toDims(max_shape);

std::vector<int64_t> dyn_shape;
for (size_t i = 0; i < opt_shape.size(); i++) {
Expand All @@ -72,7 +72,7 @@ InputRange::InputRange(std::vector<int64_t> min_shape, std::vector<int64_t> opt_
}
}

input_shape = util::toDimsPad(dyn_shape, 4);
input_shape = util::toDims(dyn_shape);

}

Expand Down
1 change: 1 addition & 0 deletions core/conversion/converters/BUILD
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ cc_library(
"impl/shuffle.cpp",
"impl/softmax.cpp",
"impl/unary.cpp",
"impl/interpolate.cpp"
],
deps = [
"@tensorrt//:nvinfer",
Expand Down
113 changes: 113 additions & 0 deletions core/conversion/converters/impl/interpolate.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
#include "torch/torch.h"
#include "core/util/prelude.h"
#include "core/conversion/converters/converters.h"

#include <csignal>

namespace trtorch {
namespace core {
namespace conversion {
namespace converters {
namespace impl {
namespace {

auto interpolate_registrations TRTORCH_UNUSED = RegisterNodeConversionPatterns()
.pattern({
"aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensor();
auto in_shape = util::toVec(in->getDimensions());

// Case 1: user uses output size and not scales
if (!args[1].IValue()->isNone() && args[2].IValue()->isNone()) {
auto out_size = util::toVec(util::toDims(args[1].unwrapToIntList()));

TRTORCH_ASSERT(out_size.size() == 1, "aten::upsample_nearest1d input Tensor and output size dimension mismatch");

auto out_shape = in_shape;
std::copy(out_size.begin(), out_size.end(), out_shape.begin() + (in_shape.size() - out_size.size()));

auto resize_layer = ctx->net->addResize(*in);
TRTORCH_CHECK(resize_layer, "Unable to create interpolation (resizing) layer from node" << *n);

resize_layer->setOutputDimensions(util::toDims(out_shape));
resize_layer->setResizeMode(nvinfer1::ResizeMode::kNEAREST);
resize_layer->setName(util::node_info(n).c_str());

auto layer_output = ctx->AssociateValueAndTensor(n->outputs()[0], resize_layer->getOutput(0));
LOG_DEBUG("Output tensor shape: " << layer_output->getDimensions());
} else {
TRTORCH_THROW_ERROR("Unable to convert node: " << util::node_info(n) << "\nScale factor parameter for upsample_nearest1d not supported yet.");
}

return true;
}
}).pattern({
"aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensor();
auto in_shape = util::toVec(in->getDimensions());

// Case 1: user uses output_size and not scales_h, scales_w
if (!args[1].IValue()->isNone() && args[2].IValue()->isNone() && args[3].IValue()->isNone()){
auto out_size = util::toVec(util::toDims(args[1].unwrapToIntList()));

TRTORCH_ASSERT(out_size.size() == 2, "aten::upsample_nearest2d input Tensor and output size dimension mismatch");

auto out_shape = in_shape;
std::copy(out_size.begin(), out_size.end(), out_shape.begin() + (in_shape.size() - out_size.size()));

auto resize_layer = ctx->net->addResize(*in);
TRTORCH_CHECK(resize_layer, "Unable to create interpolation (resizing) layer from node" << *n);

resize_layer->setOutputDimensions(util::toDims(out_shape));
resize_layer->setResizeMode(nvinfer1::ResizeMode::kNEAREST);
resize_layer->setName(util::node_info(n).c_str());

auto layer_output = ctx->AssociateValueAndTensor(n->outputs()[0], resize_layer->getOutput(0));
LOG_DEBUG("Output tensor shape: " << layer_output->getDimensions());
} else {
TRTORCH_THROW_ERROR("Unable to convert node: " << util::node_info(n) << "\nScale factor parameter for upsample_nearest2d not supported yet.");
}

return true;
}
}).pattern({
"aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensor();
auto in_shape = util::toVec(in->getDimensions());

// Case 1: user uses output size and not scales_d, scales_h, scales_w
if (!args[1].IValue()->isNone() && args[2].IValue()->isNone() && args[3].IValue()->isNone() && args[4].IValue()->isNone()) {
auto out_size = util::toVec(util::toDims(args[1].unwrapToIntList()));

TRTORCH_ASSERT(out_size.size() == 3, "aten::upsample_nearest3d input Tensor and output size dimension mismatch");

auto out_shape = in_shape;
std::copy(out_size.begin(), out_size.end(), out_shape.begin() + (in_shape.size() - out_size.size()));

auto resize_layer = ctx->net->addResize(*in);
TRTORCH_CHECK(resize_layer, "Unable to create interpolation (resizing) layer from node" << *n);

resize_layer->setOutputDimensions(util::toDims(out_shape));
resize_layer->setResizeMode(nvinfer1::ResizeMode::kNEAREST);
resize_layer->setName(util::node_info(n).c_str());

auto layer_output = ctx->AssociateValueAndTensor(n->outputs()[0], resize_layer->getOutput(0));
LOG_DEBUG("Output tensor shape: " << layer_output->getDimensions());
} else {
TRTORCH_THROW_ERROR("Unable to convert node: " << util::node_info(n) << "\nScale factor parameter for upsample_nearest3d not supported yet.");
}

return true;
}
});


} // namespace
} // namespace impl
} // namespace converters
} // namespace conversion
} // namespace core
} // namespace trtorch
5 changes: 5 additions & 0 deletions tests/core/converters/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,10 @@ converter_test(
name = "test_unary"
)

converter_test(
name = "test_interpolate"
)

test_suite(
name = "test_converters",
tests = [
Expand All @@ -65,6 +69,7 @@ test_suite(
":test_shuffle",
":test_softmax",
":test_unary",
":test_interpolate",
]
)

Expand Down
150 changes: 150 additions & 0 deletions tests/core/converters/test_interpolate.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
#include <string>
#include "gtest/gtest.h"
#include "torch/csrc/jit/ir/irparser.h"
#include "tests/util/util.h"
#include "core/compiler.h"

TEST(Converters, ATenUpsampleNearest1dConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=10]()
%3 : int[] = prim::ListConstruct(%2)
%4 : None = prim::Constant()
%5 : Tensor = aten::upsample_nearest1d(%0, %3, %4)
return (%5))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, &*g);

// Input Tensor needs to be 3D for TensorRT upsample_nearest1d
auto in = at::randint(1, 10, {10, 2, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto jit_results = trtorch::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto trt_results = trtorch::tests::util::RunGraphEngine(g, params, {trt_in});

auto trt = trt_results[0].reshape(jit_results[0].sizes());

ASSERT_TRUE(trtorch::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

TEST(Converters, ATenUpsampleNearest2dConvertsCorrectly1dOutputSize) {
const auto graph = R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=10]()
%3 : int[] = prim::ListConstruct(%2, %2)
%4 : None = prim::Constant()
%5 : Tensor = aten::upsample_nearest2d(%0, %3, %4, %4)
return (%5))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, &*g);

// Input Tensor needs to be 4D for TensorRT upsample_nearest2d
auto in = at::randint(1, 10, {10, 2, 2, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto jit_results = trtorch::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto trt_results = trtorch::tests::util::RunGraphEngine(g, params, {trt_in});

auto trt = trt_results[0].reshape(jit_results[0].sizes());

ASSERT_TRUE(trtorch::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

TEST(Converters, ATenUpsampleNearest2dConvertsCorrectly2dOutputSize) {
const auto graph = R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=10]()
%3 : int[] = prim::ListConstruct(%2, %2)
%4 : None = prim::Constant()
%5 : Tensor = aten::upsample_nearest2d(%0, %3, %4, %4)
return (%5))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, &*g);

// Input Tensor needs to be 4D for TensorRT upsample_nearest2d
auto in = at::randint(1, 10, {10, 2, 2, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto jit_results = trtorch::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto trt_results = trtorch::tests::util::RunGraphEngine(g, params, {trt_in});

auto trt = trt_results[0].reshape(jit_results[0].sizes());

ASSERT_TRUE(trtorch::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

TEST(Converters, ATenUpsampleNearest3dConvertsCorrectly1dOutputSize) {
const auto graph = R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=10]()
%3 : int[] = prim::ListConstruct(%2, %2, %2)
%4 : None = prim::Constant()
%5 : Tensor = aten::upsample_nearest3d(%0, %3, %4, %4, %4)
return (%5))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, &*g);

// Input Tensor needs to be 5D for TensorRT upsample_nearest3d
auto in = at::randint(1, 10, {10, 2, 2, 2, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto jit_results = trtorch::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto trt_results = trtorch::tests::util::RunGraphEngine(g, params, {trt_in});

auto trt = trt_results[0].reshape(jit_results[0].sizes());

ASSERT_TRUE(trtorch::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

TEST(Converters, ATenUpsampleNearest3dConvertsCorrectly3dOutputSize) {
const auto graph = R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=10]()
%3 : int[] = prim::ListConstruct(%2, %2, %2)
%4 : None = prim::Constant()
%5 : Tensor = aten::upsample_nearest3d(%0, %3, %4, %4, %4)
return (%5))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, &*g);

// Input Tensor needs to be 5D for TensorRT upsample_nearest3d
auto in = at::randint(1, 10, {10, 2, 2, 2, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto jit_results = trtorch::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = trtorch::core::conversion::get_named_params(g->inputs(), {});
auto trt_results = trtorch::tests::util::RunGraphEngine(g, params, {trt_in});

auto trt = trt_results[0].reshape(jit_results[0].sizes());

ASSERT_TRUE(trtorch::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}