Skip to content

feat!: Lock bazel version #99

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .bazelversion
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
3.2.0
20 changes: 19 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ torch.jit.save(trt_ts_module, "trt_torchscript_module.ts")

### Dependencies

- Bazel 3.2.0
- Libtorch 1.5.0
- CUDA 10.2
- cuDNN 7.6.5
Expand All @@ -81,7 +82,24 @@ Releases: https://github.com/NVIDIA/TRTorch/releases

### Installing Dependencies

You need to start by having CUDA installed on the system, Libtorch will automatically be pulled for you by bazel,
#### 0. Install Bazel

If you don't have bazel installed, the easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

```sh
export BAZEL_VERSION=<VERSION>
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh
```

You need to start by having CUDA installed on the system, LibTorch will automatically be pulled for you by bazel,
then you have two options.

#### 1. Building using cuDNN & TensorRT tarball distributions
Expand Down
18 changes: 17 additions & 1 deletion docs/_sources/tutorials/installation.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,23 @@ Compiling From Source
Dependencies for Compilation
******************************************

TRTorch is built with Bazel, so begin by installing it. https://docs.bazel.build/versions/master/install.html
TRTorch is built with Bazel, so begin by installing it.

The easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

```sh
export BAZEL_VERSION=3.2.0
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh
cp output/bazel /usr/local/bin/
```

You will also need to have CUDA installed on the system (or if running in a container, the system must have
the CUDA driver installed and the container must have CUDA)
Expand Down
2 changes: 1 addition & 1 deletion docs/searchindex.js

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/sitemap.xml
Original file line number Diff line number Diff line change
@@ -1 +1 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/class_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DataType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DeviceType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a4422781719d7befedb364cacd91c6247.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a536bba54b70e44554099d23fa3d7e804.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ae38897d1ca4438227c970029d0f76fb5.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__logging.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__ptq.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo_1_1InputRange.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/trtorch_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_orphan.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/contributors/execution.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/contributors/phases.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/contributors/system_overview.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/index.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/genindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/py-modindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/search.html</loc></url></urlset>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/class_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DataType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DeviceType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a4422781719d7befedb364cacd91c6247.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a536bba54b70e44554099d23fa3d7e804.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ae38897d1ca4438227c970029d0f76fb5.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__logging.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__ptq.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo_1_1InputRange.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/trtorch_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_orphan.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/index.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/tutorials/installation.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/genindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/py-modindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/search.html</loc></url></urlset>
85 changes: 79 additions & 6 deletions docs/tutorials/installation.html
Original file line number Diff line number Diff line change
Expand Up @@ -455,32 +455,32 @@
<ul class="md-nav__list">
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#tensorrt-available-layers-and-expected-dimensions">
TensorRT Available Layers and Expected Dimensions:
TensorRT Available Layers and Expected Dimensions
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#tensorrt-c-documentation">
TensorRT C++ Documentation:
TensorRT C++ Documentation
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#tensorrt-python-documentation-sometimes-easier-to-read">
TensorRT Python Documentation (Sometimes easier to read):
TensorRT Python Documentation (Sometimes easier to read)
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#pytorch-functional-api">
PyTorch Functional API:
PyTorch Functional API
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#pytorch-native-ops">
PyTorch native_ops:
PyTorch native_ops
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#pytorch-ir-documentation">
PyTorch IR Documentation:
PyTorch IR Documentation
</a>
</li>
</ul>
Expand Down Expand Up @@ -751,10 +751,83 @@ <h2 id="dependencies-for-compilation">
</h2>
<p>
TRTorch is built with Bazel, so begin by installing it.
</p>
<p>
The easiest way is to install bazelisk using the method of you choosing
<a class="reference external" href="https://github.com/bazelbuild/bazelisk">
https://github.com/bazelbuild/bazelisk
</a>
</p>
<p>
Otherwise you can use the following instructions to install binaries
<a class="reference external" href="https://docs.bazel.build/versions/master/install.html">
https://docs.bazel.build/versions/master/install.html
</a>
</p>
<p>
Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions
</p>
<p>
<code class="docutils literal notranslate">
<span class="pre">
`sh
</span>
<span class="pre">
export
</span>
<span class="pre">
BAZEL_VERSION=3.2.0
</span>
<span class="pre">
mkdir
</span>
<span class="pre">
bazel
</span>
<span class="pre">
cd
</span>
<span class="pre">
bazel
</span>
<span class="pre">
curl
</span>
<span class="pre">
-fSsL
</span>
<span class="pre">
-O
</span>
<span class="pre">
https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
</span>
<span class="pre">
unzip
</span>
<span class="pre">
bazel-$BAZEL_VERSION-dist.zip
</span>
<span class="pre">
bash
</span>
<span class="pre">
./compile.sh
</span>
<span class="pre">
cp
</span>
<span class="pre">
output/bazel
</span>
<span class="pre">
/usr/local/bin/
</span>
<span class="pre">
`
</span>
</code>
</p>
<p>
You will also need to have CUDA installed on the system (or if running in a container, the system must have
the CUDA driver installed and the container must have CUDA)
Expand Down
18 changes: 17 additions & 1 deletion docsrc/tutorials/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,23 @@ Compiling From Source
Dependencies for Compilation
******************************************

TRTorch is built with Bazel, so begin by installing it. https://docs.bazel.build/versions/master/install.html
TRTorch is built with Bazel, so begin by installing it.

The easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

```sh
export BAZEL_VERSION=3.2.0
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh
cp output/bazel /usr/local/bin/
```

You will also need to have CUDA installed on the system (or if running in a container, the system must have
the CUDA driver installed and the container must have CUDA)
Expand Down