Skip to content

Add the example non-genai qnn model to ci and benchinfra #4747

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 30 additions & 2 deletions .ci/scripts/build-qnn-sdk.sh
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,43 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

set -ex
set -eux

build_qnn_backend() {
echo "Start building qnn backend."
export ANDROID_NDK_ROOT=/opt/ndk
export QNN_SDK_ROOT=/tmp/qnn/2.23.0.240531
export EXECUTORCH_ROOT="$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")/.." && pwd)"
export EXECUTORCH_ROOT="$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")/../.." && pwd)"

bash backends/qualcomm/scripts/build.sh --skip_aarch64 --job_number 2 --release
}

set_up_aot() {
cd $EXECUTORCH_ROOT
if [ ! -d "cmake-out" ]; then
mkdir cmake-out
fi
pushd cmake-out
cmake .. \
-DCMAKE_INSTALL_PREFIX=$PWD \
-DEXECUTORCH_BUILD_QNN=ON \
-DQNN_SDK_ROOT=${QNN_SDK_ROOT} \
-DEXECUTORCH_BUILD_SDK=ON \
-DEXECUTORCH_BUILD_EXTENSION_MODULE=ON \
-DEXECUTORCH_ENABLE_EVENT_TRACER=ON \
-DPYTHON_EXECUTABLE=python3 \
-DEXECUTORCH_SEPARATE_FLATCC_HOST_PROJECT=OFF
cmake --build $PWD --target "PyQnnManagerAdaptor" "PyQnnWrapperAdaptor" -j$(nproc)
# install Python APIs to correct import path
# The filename might vary depending on your Python and host version.
cp -f backends/qualcomm/PyQnnManagerAdaptor.cpython-310-x86_64-linux-gnu.so $EXECUTORCH_ROOT/backends/qualcomm/python
cp -f backends/qualcomm/PyQnnWrapperAdaptor.cpython-310-x86_64-linux-gnu.so $EXECUTORCH_ROOT/backends/qualcomm/python
popd

# Workaround for fbs files in exir/_serialize
cp schema/program.fbs exir/_serialize/program.fbs
cp schema/scalar_type.fbs exir/_serialize/scalar_type.fbs
}

build_qnn_backend
set_up_aot
46 changes: 46 additions & 0 deletions .ci/scripts/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,25 @@ if [[ -z "${BACKEND:-}" ]]; then
exit 1
fi

UPLOAD_DIR=${4:-}

if [[ -z "${PYTHON_EXECUTABLE:-}" ]]; then
PYTHON_EXECUTABLE=python3
fi
which "${PYTHON_EXECUTABLE}"

# Just set this variable here, it's cheap even if we use buck2
CMAKE_OUTPUT_DIR=cmake-out
EXPORTED_MODEL=${MODEL_NAME}

prepare_artifacts_upload() {
if [ -n "$UPLOAD_DIR" ]; then
echo "Preparing for uploading generated artifacs"
zip -j model.zip "${EXPORTED_MODEL}"
mkdir -p "${UPLOAD_DIR}"
mv model.zip "${UPLOAD_DIR}"
fi
}

build_cmake_executor_runner() {
echo "Building executor_runner"
Expand Down Expand Up @@ -114,6 +130,7 @@ test_model_with_xnnpack() {
fi

OUTPUT_MODEL_PATH="${MODEL_NAME}_xnnpack_${SUFFIX}.pte"
EXPORTED_MODEL=${OUTPUT_MODEL_PATH}

# Run test model
if [[ "${BUILD_TOOL}" == "buck2" ]]; then
Expand All @@ -129,9 +146,36 @@ test_model_with_xnnpack() {
fi
}

test_model_with_qnn() {
source "$(dirname "${BASH_SOURCE[0]}")/build-qnn-sdk.sh"
echo "ANDROID_NDK_ROOT: $ANDROID_NDK_ROOT"
echo "QNN_SDK_ROOT: $QNN_SDK_ROOT"
echo "EXECUTORCH_ROOT: $EXECUTORCH_ROOT"

export LD_LIBRARY_PATH=$QNN_SDK_ROOT/lib/x86_64-linux-clang/
export PYTHONPATH=$EXECUTORCH_ROOT/..

if [[ "${MODEL_NAME}" == "dl3" ]]; then
"${PYTHON_EXECUTABLE}" -m examples.qualcomm.scripts.deeplab_v3 -b ${CMAKE_OUTPUT_DIR} -m SM8550 --compile_only --download
EXPORTED_MODEL=./deeplab_v3/dlv3_qnn.pte
fi
}

if [[ "${BACKEND}" == "portable" ]]; then
echo "Testing ${MODEL_NAME} with portable kernels..."
test_model
elif [[ "${BACKEND}" == "qnn" ]]; then
echo "Testing ${MODEL_NAME} with qnn..."
test_model_with_qnn
if [[ $? -eq 0 ]]; then
prepare_artifacts_upload
fi
elif [[ "${BACKEND}" == "xnnpack" ]]; then
echo "Testing ${MODEL_NAME} with xnnpack..."
test_model_with_xnnpack true true
if [[ $? -eq 0 ]]; then
prepare_artifacts_upload
fi
else
set +e
if [[ "${BACKEND}" == *"quantization"* ]]; then
Expand All @@ -153,5 +197,7 @@ else
if [[ -n "${Q_ERROR:-}" ]] || [[ -n "${D_ERROR:-}" ]] || [[ -n "${Q_D_ERROR:-}" ]]; then
echo "Portable q8 ${Q_ERROR:-ok}," "Delegation fp32 ${D_ERROR:-ok}," "Delegation q8 ${Q_D_ERROR:-ok}"
exit 1
else
prepare_artifacts_upload
fi
fi
33 changes: 24 additions & 9 deletions .github/workflows/android-perf.yml
Original file line number Diff line number Diff line change
Expand Up @@ -135,24 +135,39 @@ jobs:
fail-fast: false
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-clang12
docker-image: executorch-ubuntu-22.04-clang12-android
submodules: 'true'
timeout: 60
upload-artifact: android-models
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
echo "::group::Setting up dev environment"
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"

if [[ ${{ matrix.delegate }} == "qnn" ]]; then
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-qnn-deps.sh
PYTHON_EXECUTABLE=python bash .ci/scripts/build-qnn-sdk.sh
fi
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh "cmake"
echo "Exporting model: ${{ matrix.model }}"
export ARTIFACTS_DIR_NAME=artifacts-to-be-uploaded/${{ matrix.model }}_${{ matrix.delegate }}
ARTIFACTS_DIR_NAME=artifacts-to-be-uploaded/${{ matrix.model }}_${{ matrix.delegate }}
echo "::endgroup::"

# TODO(T197546696): Note that the following scripts/steps only work for llama. It's expected to fail for other models+delegates.
# Install requirements for export_llama
PYTHON_EXECUTABLE=python bash examples/models/llama2/install_requirements.sh
# Test llama2
PYTHON_EXECUTABLE=python bash .ci/scripts/test_llama.sh "${{ matrix.model }}.pt" "cmake" "fp32" "xnnpack+custom+qe" "${ARTIFACTS_DIR_NAME}"\
echo "::group::Exporting ${{ matrix.delegate }} model: ${{ matrix.model }}"
BUILD_MODE="cmake"
DTYPE="fp32"

if [[ ${{ matrix.model }} == "llama*" ]]; then
# Install requirements for export_llama
PYTHON_EXECUTABLE=python bash examples/models/llama2/install_requirements.sh
# Test llama2
if [[ ${{ matrix.delegate }} == "xnnpack" ]]; then
DELEGATE_CONFIG="xnnpack+custom+qe"
fi
PYTHON_EXECUTABLE=python bash .ci/scripts/test_llama.sh "${{ matrix.model }}.pt" "${BUILD_MODE}" "${DTYPE}" "${DELEGATE_CONFIG}" "${ARTIFACTS_DIR_NAME}"
else
PYTHON_EXECUTABLE=python bash .ci/scripts/test.sh "${{ matrix.model }}" "${BUILD_MODE}" "${{ matrix.delegate }}" "${ARTIFACTS_DIR_NAME}"
fi
echo "::endgroup::"

# Upload models to S3. The artifacts are needed not only by the device farm but also TorchChat
upload-models:
Expand Down
23 changes: 23 additions & 0 deletions .github/workflows/trunk.yml
Original file line number Diff line number Diff line change
Expand Up @@ -270,3 +270,26 @@ jobs:
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash examples/models/llama2/install_requirements.sh
# Test llama2
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/test_llama.sh stories110M.pt "${BUILD_TOOL}" "${DTYPE}" "${MODE}"

test-qnn-model:
name: test-qnn-model
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
strategy:
matrix:
dtype: [fp32]
model: [dl3]
fail-fast: false
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-clang12-android
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 900
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh cmake
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-qnn-deps.sh
PYTHON_EXECUTABLE=python bash .ci/scripts/build-qnn-sdk.sh
PYTHON_EXECUTABLE=python bash .ci/scripts/test.sh ${{ matrix.model }} "cmake" "qnn"
Loading