-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][linalg] Add an e2e test for linalg.matmul to ArmSME #72144
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
714023d
to
4e70f9d
Compare
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir-sme Author: Cullen Rhodes (c-rhodes) ChangesThis patch adds an integration test lowering a linalg.matmul to SME via It's similar to the linalg.matmul_transpose_a e2e test added recently in
Rank-2 vectors with leading scalable dim can't be type converted to an Full diff: https://github.com/llvm/llvm-project/pull/72144.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/matmul.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/matmul.mlir
new file mode 100644
index 000000000000000..2b7aa6cf4e3f4d9
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/matmul.mlir
@@ -0,0 +1,103 @@
+// RUN: mlir-opt %s \
+// RUN: -transform-interpreter -test-transform-dialect-erase-schedule \
+// RUN: -canonicalize \
+// RUN: -enable-arm-streaming="streaming-mode=streaming-locally za-mode=new-za" \
+// RUN: -convert-vector-to-arm-sme -convert-arm-sme-to-scf \
+// RUN: -convert-vector-to-scf -cse -arm-sve-legalize-vector-storage \
+// RUN: -convert-vector-to-llvm=enable-arm-sme \
+// RUN: -convert-vector-to-llvm=enable-arm-sve \
+// RUN: -cse -canonicalize -allocate-arm-sme-tiles -test-lower-to-llvm | \
+// RUN: %mcr_aarch64_cmd \
+// RUN: -e=main -entry-point-result=void \
+// RUN: -march=aarch64 -mattr="+sve,+sme" \
+// RUN: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%arm_sme_abi_shlib | \
+// RUN: FileCheck %s
+
+func.func @matmul(%A : tensor<?x?xf32>, %B : tensor<?x?xf32>, %C : tensor<?x?xf32>) {
+ %res = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
+ outs(%C: tensor<?x?xf32>) -> tensor<?x?xf32>
+ %xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32>
+ call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
+ return
+}
+
+func.func @main() attributes { enable_arm_streaming_ignore } {
+ %c0 = arith.constant 0 : i32
+ %c7 = arith.constant 7 : index
+
+ %A = arith.constant dense<[
+ [ 1., 8., 15., 22., 29., 36., 43., 50., 57., 64., 71., 78., 85.],
+ [ 2., 9., 16., 23., 30., 37., 44., 51., 58., 65., 72., 79., 86.],
+ [ 3., 10., 17., 24., 31., 38., 45., 52., 59., 66., 73., 80., 87.],
+ [ 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88.],
+ [ 5., 12., 19., 26., 33., 40., 47., 54., 61., 68., 75., 82., 89.],
+ [ 6., 13., 20., 27., 34., 41., 48., 55., 62., 69., 76., 83., 90.],
+ [ 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91.]
+ ]> : tensor<7x13xf32>
+
+ %B_init = tensor.empty() : tensor<13x7xf32>
+ %B = linalg.transpose ins(%A: tensor<7x13xf32>)
+ outs(%B_init: tensor<13x7xf32>) permutation = [1, 0]
+
+ %A_dyn = tensor.cast %A : tensor<7x13xf32> to tensor<?x?xf32>
+ %B_dyn = tensor.cast %B : tensor<13x7xf32> to tensor<?x?xf32>
+
+ %C_init = bufferization.alloc_tensor(%c7, %c7) : tensor<?x?xf32>
+ %C = linalg.fill ins(%c0 : i32) outs(%C_init : tensor<?x?xf32>) -> tensor<?x?xf32>
+
+ // CHECK: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [7, 7] strides = [7, 1] data =
+ // CHECK: [32955, 33514, 34073, 34632, 35191, 35750, 36309]
+ // CHECK: [33514, 34086, 34658, 35230, 35802, 36374, 36946]
+ // CHECK: [34073, 34658, 35243, 35828, 36413, 36998, 37583]
+ // CHECK: [34632, 35230, 35828, 36426, 37024, 37622, 38220]
+ // CHECK: [35191, 35802, 36413, 37024, 37635, 38246, 38857]
+ // CHECK: [35750, 36374, 36998, 37622, 38246, 38870, 39494]
+ // CHECK: [36309, 36946, 37583, 38220, 38857, 39494, 40131]
+ call @matmul(%A_dyn, %B_dyn, %C) : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) -> ()
+
+ return
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%module : !transform.any_op {transform.consumed}) {
+ %matmul = transform.structured.match ops{["linalg.matmul"]} in %module
+ : (!transform.any_op) -> !transform.any_op
+
+ // Step 1: Tile for size [4] x [4], which corresponds to SVLs x SVLs, where
+ // SVLs is the number of 32-bit elements in a vector of SVL bits.
+ %tiled_linalg_op, %loops:3 = transform.structured.tile_using_for %matmul[[4], [4], 1]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
+
+ // Step 2: Vectorize.
+ transform.structured.vectorize %tiled_linalg_op vector_sizes [[4], [4], 1]
+ : !transform.any_op
+
+ // Step 3: Bufferize ahead of TransferReadDropUnitDimsPattern, which
+ // currently only supports memrefs.
+ %bufferize = transform.bufferization.one_shot_bufferize %module
+ {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+ %func = transform.structured.match ops{["func.func"]} in %bufferize
+ : (!transform.any_op) -> !transform.any_op
+
+ // Step 4: Lower vector.multi_reduction to vector.contract (+ some helpful patterns).
+ transform.apply_patterns to %func {
+ transform.apply_patterns.vector.lower_masked_transfers
+ transform.apply_patterns.vector.transfer_permutation_patterns
+ transform.apply_patterns.vector.reduction_to_contract
+ } : !transform.any_op
+
+ // Step 5: Lower vector.contract to vector.outerproduct. Also drop unit
+ // dims, specifically to prevent vector.transfer_read of vector<[4]x1xf32>,
+ // which can't be lowered in generic path.
+ transform.apply_patterns to %func {
+ transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
+ transform.apply_patterns.vector.lower_masks
+ transform.apply_patterns.vector.rank_reducing_subview_patterns
+ } : !transform.any_op
+
+ transform.yield
+ }
+}
+
+func.func private @printMemrefF32(%ptr : tensor<*xf32>)
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM 🎉
I do wonder how transform.apply_patterns.vector.rank_reducing_subview_patterns
will be integrated more generally into a pipeline, but that's not a concern here 😄
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, ta!
This patch adds an integration test lowering a linalg.matmul to SME via vector.outerproduct. It's similar to the linalg.matmul_transpose_a e2e test added recently in as well as vector transpose canonicalizations, to lower the following sequence (taken from the inner loop): %subview = memref.subview %arg0[%arg3, %arg5] [%2, 1] [1, 1] : memref<?x?xf32, strided<[?, ?], offset: ?>> to memref<?x1xf32, strided<[?, ?], offset: ?>> %mask = vector.create_mask %2, %c1 : vector<[4]x1xi1> %0 = vector.transfer_read %subview[%c0, %c0], %pad, %mask {in_bounds = [true, true]} : memref<?x1xf32, strided<[?, ?], offset: ?>>, vector<[4]x1xf32> %1 = vector.transpose %0, [1, 0] : vector<[4]x1xf32> to vector<1x[4]xf32> %2 = vector.extract %1[0] : vector<[4]xf32> from vector<1x[4]xf32> Rank-2 vectors with leading scalable dim can't be type converted to an array. TransferReadDropUnitDimsPattern drops the unit dim on the vector.transfer_read so it can be lowered via the generic path (to SVE). The transpose canonicalizations lower the transpose to a shape_cast which folds away.
4e70f9d
to
d58a606
Compare
Rebased after pipeline changes in #72890. |
This patch adds an integration test lowering a linalg.matmul to SME via
vector.outerproduct.
It's similar to the linalg.matmul_transpose_a e2e test added recently in
as well as vector transpose canonicalizations, to lower the following
sequence (taken from the inner loop):
Rank-2 vectors with leading scalable dim can't be type converted to an
array. TransferReadDropUnitDimsPattern drops the unit dim on the
vector.transfer_read so it can be lowered via the generic path (to SVE).
The transpose canonicalizations lower the transpose to a shape_cast
which folds away.